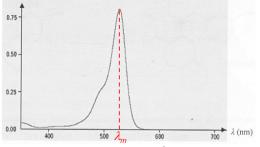
Exercice 2 – L'ÉRYTHROSINE, COLORANT ALIMENTAIRE (4,5 points)

Partie A – Concentration en érythrosine dans la solution contenue dans la boîte de cerise

1. On choisit une longueur d'onde où l'espèce à doser absorbe beaucoup ; ici on choisira $\lambda_m = 520$ nm.

2. D'après la loi de Beer-Lambert, $A = \varepsilon \times I \times C \Leftrightarrow C = \frac{A}{I}$

On considère que l'érythrosine E est la seule espèce qui absorbe la lumière donc $[E] = \frac{A}{a \times L}$



Vu que les valeurs de ε et de l sont connues, la mesure de A permettra de déterminer [E].

Remarque : la valeur du coefficient d'absorption molaire ¿dépend de la longueur d'onde, il faut donc comprendre que la valeur donnée est celle à laquelle la mesure est faite.

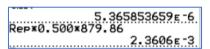
3.
$$[E] = \frac{0.44}{8.2 \times 10^4 \text{ L.mol}^{-1}.\text{cm}^{-1} \times 1.0 \text{ cm}} = 5.4 \times 10^{-6} \text{ mol.L}^{-1}$$

$$5.365853659 \text{ E}^{-6}$$

4. La DJA est 0,1 mg/kg de masse corporelle donc une personne de 50 kg peut consommer $50 \times 0.1 = 5$ mg de E par jour.

Or
$$n(E) = [E] \times Vet \ m(E) = n(E) \times M(E) \ donc \ m(E) = [E] \times V \times M(E)$$

 $m(E) = 5.4 \times 10^{-6} \times 500 \times 10^{-3} \times 879.86 = 2.4 \times 10^{-3} \ g = 2.4 \ mg$



Cette valeur étant inférieure aux 5 mg calculés plus haut, une personne de 50kg peut effectivement consommer la totalité de la solution sans risque pour la santé.

Partie B – Cinétique de la décoloration de l'érythrosine par l'eau de Javel

5. En lisant le protocole, on constate que la solution S₁ est préparée par dilution S₀.

Déterminons d'abord la concentration en ions CIO dans la solution mère S₀.

Les résultats intermédiaires ne seront pas arrondis.

Considérons un volume de solution V_S = 1,000 L (valeur exacte).

Ce volume de solution a une masse $m_s = 1095 \text{ g}(\text{car la masse volumique vaut } 1095 \text{ g.L}^{-1}).$

Elle contient 4,8% en masse de CIO⁻soit $m(CIO^-) = \frac{4,8}{100} \times 1095 = 52,56$ g.

Cela correspond à une quantité de matière $n(CIO^-) = \frac{m(CIO^-)}{M(CIO^-)} = \frac{52,56}{35,5+16,0} = 1,02 \text{ mol}.$

Ainsi,
$$C_0 = C(CIO^-) = \frac{n(CIO^-)}{V_s} = \frac{1,02}{1,000} = 1,02 \text{ mol.L}^{-1} \text{ pour la solution } S_0.$$

Lors de la dilution, la quantité de matière de soluté se conserve : $n = C_0 \times V_0 = C_1 \times V_1$

Donc
$$C_1 = \frac{C_0 \times V_0}{V_i}$$

Conclusion $C_1 = \frac{1,02 \times 30}{100} = 0,306 \text{ mol.L}^{-1} \approx 0,31 \text{ mol.L}^{-1}(2 \text{ CS comme le } 4,8\% \text{ précédent})$

6.
$$n_{Ei} = [E] \times V_E \text{soit } n(E)_i = 5,4 \times 10^{-6} \times 5,0 \times 10^{-3} = 2,7 \times 10^{-8} \text{ mol}$$

 $n_{Hi} = C_1 \times V_1 \text{soit } n(H)_i = 3,1 \times 10^{-1} \times 5,0 \times 10^{-3} = 1,5 \times 10^{-3} \text{ mol}$

1.02*30/100 3.06E-1 Rep*5E-3 1.53E-3

En tenant compte de la stœchiométrie de l'équation 1 :

 $\frac{n_{Hi}}{1} \gg \frac{n_{Ei}}{1}$ donc les ions hypochlorite CIO-sont en en large excès.

- 7. Par définition : $v = v_{disp}(E) = -\frac{d[E]}{dt}$
- **8.** Dans le cas d'une loi de vitesse d'ordre 1 (par rapport à E), la vitesse de disparition de E est proportionnelle à sa concentration : $v = v_{disp}(E) = k \times [E]$.
- **9.** Le temps de demi-réaction $t_{1/2}$ correspond à la durée pour que l'avancement atteigne la moitié de son évolution finale.

Ici, E étant le réactif limitant et la transformation étant totale, $[E]_{\infty} = 0$ ainsi $[E](t_{1/2}) = \frac{1}{2} \times [E]_{0}$.

Or
$$[E](t) = [E]_0 \times e^{-k \times t}$$
donc $[E](t_{1/2}) = [E]_0 \times e^{-k \times t_{1/2}}$.

En égalant les deux expressions de $[E](t_{1/2})$: $[E](t_{1/2}) = \frac{1}{2} \times [E]_0 = [E]_0 \times e^{-k \times t_{1/2}}$.

Donc $\frac{1}{2} = e^{-k \times t_{1/2}}$, en appliquant la fonction ln de chaque côté de l'égalité, il vient :

$$\ln\left(\frac{1}{2}\right) = \ln\left(e^{-k \times t_{1/2}}\right)$$

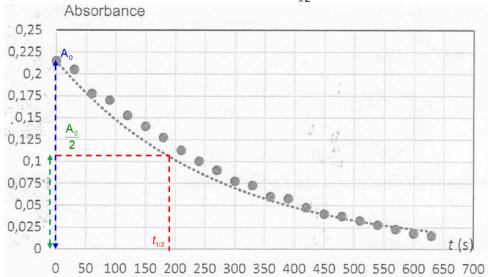
$$\ln(1) - \ln(2) = -k \cdot t_{1/2}$$

$$\ln(2) = k \cdot t_{1/2} \text{ donc } t_{1/2} = \frac{\ln(2)}{k}.$$

10. D'après la question **2.**, $[E] = \frac{A}{\varepsilon \times I}$ avec ε et I constantes durant l'expérience.

Ainsi A et [E] sont proportionnelles : si l'évolution de [E] suit une loi de décroissance exponentielle, l'évolution de A suit une loi de décroissance exponentielle également.

11. En reprenant la définition du temps de demi-réaction donnée à la question **9.**, on se cherche la date à laquelle l'absorbance initiale a été divisée par 2 : $t_{y_2} = 190 \text{ s}$



Rq : c'est similaire au temps de demi-vie étudié en ES et qui sera revu (peut-être) en EDS après l'examen. Graphiquement, il suffit de mesurer la distance entre 0 et A₀ sur le papier et de la diviser par 2.

Conclusion : on peut considérer que l'action décolorante de l'eau de Javel est assez rapide vu qu'en 3 minutes environ, la moitié du colorant a disparu.

Autre méthode : En reprenant la modélisation de la courbe donnée par le tableur $A=0,215\times e^{-0,0036\times t}donc~k=0,0036~s^{-1}$

$$A = 0.215 \times e^{-0.0036 \times t} donc k = 0.0036 s^{-1}$$

$$t_{1/2} = \frac{\ln(2)}{k} \text{donc } t_{1/2} = \frac{\ln(2)}{0,0036} = 1.9 \times 10^2 \text{s}$$