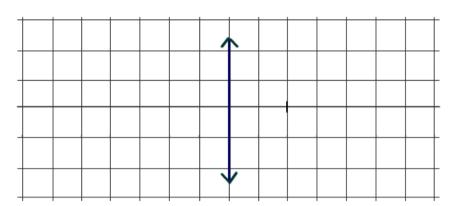
ONDES ET SIGNAUX

CHAPITRE 19 DU LIVRE


LA LUNETTE ASTRONOMIQUE

Notions et contenus	Capacités exigibles
Modèle optique d'une	Représenter le schéma d'une lunette afocale modélisée par deux lentilles minces convergentes.
lunette astronomique avec objectif et	identifier l'objectif et l'oculaire.
oculaire convergents.	Représenter le faisceau émergent issu d'un point objet situé «à l'infini» et traversant une lunette afocale.
Grossissement.	Établir l'expression du grossissement d'une lunette afocale.
GIUSSISSEITICITE.	Exploiter les données caractéristiques d'une lunette commerciale.

PREMIERE PARTIE: IMAGE FORMEE PAR UNE LENTILLE

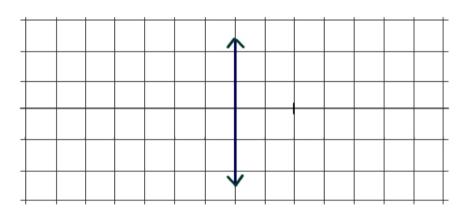
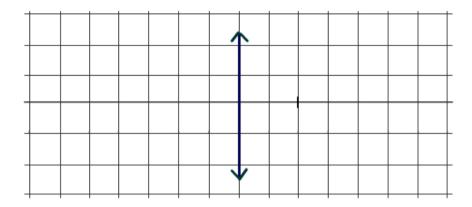

Dessinez l'image de la lentille convergente dans les cas suivants (échelle: *chaque carreau mesure 5cm*). La lentille est convergente, sa distance focale vaut: **f'=10cm**.

Image d'un objet très éloigné:

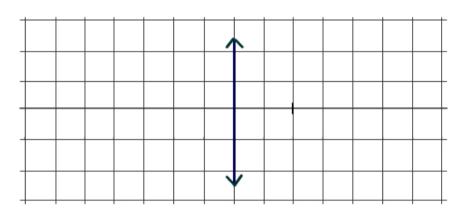
.

L'objet est à 30 cm de la lentille:

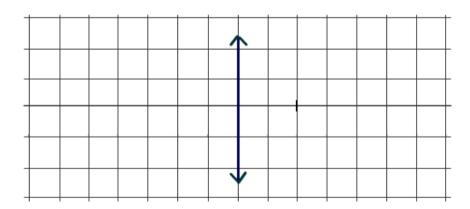


.....

Application: Déterminer la position de l'image à l'aide de la formule de conjugaison vue en première:


$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

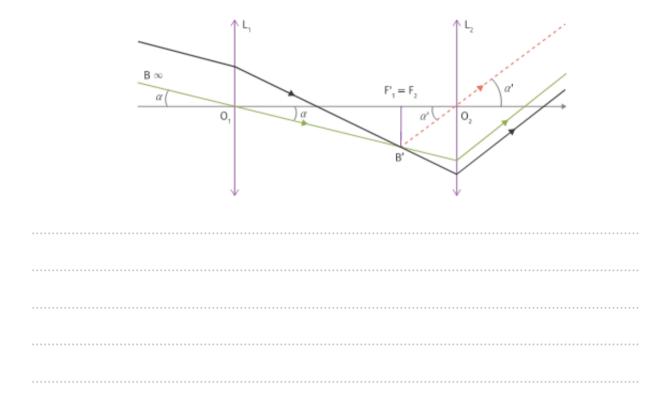
L'objet est à 20 cm de la lentille:


.....

L'objet est à 10 cm de la lentille:

.....

L'objet est à 5 cm de la lentille:



.....

DEUXIEME PARTIE: LUNETTE ASTRONOMIQUE

1) Schéma d'une lunette astronomique

La lunette astronomique afocale est composée de deux lentilles : la première est notée L_1 et est appelée objectif ; la seconde est notée L_2 et est appelée oculaire.

2) Grossissement

Le grossissement, noté G, permet de quantifier l'agrandissement de l'image obtenue par rapport à l'objet.

$$G = \frac{\alpha'}{\alpha}$$
 G: Grossissement de la lunette (sans unité)
 α' : angle d'observation avec l'instrument (rad)
 α : angle d'observation à l'œil nu (rad)

Donnée : Angle limite de l'observation de l'œil humain moyen : $\alpha_{lim}=3,3\times10^{-4}$ rad

SS A											_																					-	_	_																																																								
oca 'ap					•						(O	C	21	u	1	ć	a	į	į	r	•(e	•	•]	I	2)	8	a	.1	n	1	S	5	1	(•	()	a	LS	S	()	ù	l	1	e	S	a	1	1	٤	<u>[</u>]	l	•	S	•	S)	n	t]	þ	e	:t	i	t	S	,	()	n	l	r)(e	ι	11	t	f	E	?	a	ιi	i.	ľ	(
	• • • •	• • • •	• • • •	 		 	 	 	 	2 0																٠	۰	٠												۰	۰				٠			۰			 ٠		۰																	• •										۰										

un objectif oculaires de	Cette lunette de distance f distances foca grossissement	Focale $f1'=7$ les $f_2'=25$ n	700 mm e nm et $f_3'=1$	et deux 0 mm.	